Dynamic Factor Analysis for Cognitive Trajectories∗
نویسندگان
چکیده
We propose a dynamic factor model appropriate for panel datasets and develop an estimation algorithm which can handle datasets with large number of subjects and short temporal information. The algorithm uses a two cycle iterative approach for model estimation in such a large dataset. Each iteration consists of two distinct cycles, both following an EM algorithm approach. This iterative process will continue until convergence is achieved. We utilized a dataset from the National Alzheimer Coordinating Center (NACC) to estimate underlying measures of cognition based on a battery of observed neuropsychological tests. We assess the goodness of fit and the precision of the dynamic factor model estimators and compare it with a non-dynamic version in which temporal information is not used. The dynamic factor model is superior to a non-dynamic version with respect to fit statistics shown in simulation experiments. Moreover, it has increased power to detect differences in the rate of decline for a given sample size.
منابع مشابه
Biomechanical Investigation of Empirical Optimal Trajectories Introduced for Snatch Weightlifting
The optimal barbell trajectory for snatch weightlifting has been achieved empirically by several researchers. They have studied the differences between the elite weightlifters’ movement patterns and suggested three optimal barbell trajectories (type A, B, and C). But they didn’t agree for introducing the best trajectory. One of the reasons is this idea that the selected criterion by researchers...
متن کاملAnalytical Dynamic Modelling of Heel-off and Toe-off Motions for a 2D Humanoid Robot
The main objective of this article is to optimize the walking pattern of a 2D humanoid robot with heel-off and toe-off motions in order to minimize the energy consumption and maximize the stability margin. To this end, at first, a gait planning method is introduced based on the ankle and hip joint position trajectories. Then, using these trajectories and the inverse kinematics, the position tra...
متن کاملA Gravitational Search Algorithm-Based Single-Center of Mass Flocking Control for Tracking Single and Multiple Dynamic Targets for Parabolic Trajectories in Mobile Sensor Networks
Developing optimal flocking control procedure is an essential problem in mobile sensor networks (MSNs). Furthermore, finding the parameters such that the sensors can reach to the target in an appropriate time is an important issue. This paper offers an optimization approach based on metaheuristic methods for flocking control in MSNs to follow a target. We develop a non-differentiable optimizati...
متن کاملDynamic Factor Analysis for Multivariate Time Series: An Application to Cognitive Trajectories
We propose a dynamic factor model appropriate for large epidemiological studies and develop an estimation algorithm which can handle datasets with large number of subjects and short temporal information. The algorithm uses a two cycle iterative approach for parameter estimation in such a large dataset. Each iteration consists of two distinct cycles, both following an EM algorithm approach. This...
متن کاملOptimal Trajectory Planning of a Box Transporter Mobile Robot
This paper aims to discuss the requirements of safe and smooth trajectory planning of transporter mobile robots to perform non-prehensile object manipulation task. In non-prehensile approach, the robot and the object must keep their grasp-less contact during manipulation task. To this end, dynamic grasp concept is employed for a box manipulation task and corresponding conditions are obtained an...
متن کامل